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Activities

Session opens
     Welcome
     Introduction: The Goodwin Model
     Exercise:      Setting up a model of a linear  
                          chain or reaction without and                  
                          with feedback
     Exercise:      Numerical Simulations of a set 
                          of differential equations
     Tasks:           - State Space
                          - Parameter Space
                          - Parameter Protocol
End of Session



Algorithms of Life 

From: Paul Nurse: Life, Logic and Information.

Nature 454, 424-426 (24 July 2008)

http://www.nature.com/nature/journal/v454/n7203/full/454424a.html  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Warm-up Exercises


1. Linear chain of reactions

We consider a chain of first order reactions expanded by one zero order 
influx:

Implement this model in a model function file.

There should be three variables with 4 reactions. Each reaction should get a 
rate constant. Assign k0 = k1 = k2 = k3 = 1. 

Use initial conditions A(0) = 5, B(0) = C(0) = 0.

Simulate the model using MATLAB’s ode45 function for 10 time units.

Describe the time course of each of the variables. 
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2. Linear chain with negative feedback

Now expand the linear pathway model to include negative feedback.

The feedback function is implemented as:      k0 / (Km + k_1*[C]^n)

What does this “network” look like when using MATLAB’s biograph?

Assign k0 = k1 = k2 = k3 = 1, Km = k_i = 1, n=1. 

Use initial conditions A(0) = 5, B(0) = C(0) = 0.

Simulate the model using MATLAB’s ode45 function for 10 time units.

Describe the time course of each of the variables.

Compare the result to the linear chain without feedback.
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The Goodwin Model 
 

                 dX1/dt =  k0 / ( KM + ki ⋅X3n ) - k1*X1 
                 dX2/dt =                       k1*X1 - k2*X2 
                 dX3/dt =                       k2*X2 - k3*X3 

Goodwin, B. (1963). Temporal Organization in Cells. New York: Academic Press. 
https://ia600407.us.archive.org/32/items/temporalorganiza00good/temporalorganiza00good.pdf 
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Goodwin Model with Negative Feedback 

Model equations:


                 dX1/dt =  k0 / ( KM + ki ⋅X3n ) - k1*X1 
                 dX2/dt =                   k1*X1       - k2*X2 
                 dX3/dt =                   k2*X2       - k3*X3 

Parameters:                          k0 = 1; Km = 0.1; k_i = 0.1; n = 1 or 10;

                                              k1 = k2 = k3 = 1;


Matlab Algebraic:

                  dxdt(1) =  k0 / ( Km1 + k_i*x(3)^n ) - k1*x(1);

                  dxdt(2) =                       k1*x(1)       - k2*x(2);

                  dxdt(3) =                       k2*x(2)       - k3*x(3);


 Matlab Symbolic:

                  f1 =  1/(0.01+0.1*x3^1) - x1;

                  f2 =                           x1 - x2;

                  f3 =                           x2 - x3;
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Feedback Inhibition

% Parameters
k0 = 1; Km = 0.1; k_i = 0.1;

% Define Function
FB_inh1 = @(X2) k0/(Km+k_i*X2^1);

% Plot Function
fplot(FB_inh1,[0,1]); hold on

% Re-Define Function
FB_inh2 = @(X2) k0/(Km+k_i*X2^2);

% Re-Plot Function
fplot(FB_inh2,[0,1],’r’)

For n=1, the function decays with decreasing slope. For n=2, the 
decrease is sigmoidal: starting from zero the slope increase, goes 
through an inflection point, then slowing towards zero for large 
values of X2. 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Exemplary Simulation Output:

For k_i=0, there is just an increase towards the steady state in all 
variables. For k_i=0.1, there is an increase followed by a maximum 
(overshoot) and then an oscillatory state.
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